PHENIX Background Status

John Haggerty *Brookhaven National Laboratory*

The weekend background

We decided to turn on the MUID and RPC starting Friday night when the background counters were higher than usual by a factor of ~2 (500 kHz in N3)

PHENIX history and lore is that we should wait until the counters outside Q1Q2Q3 are "low" which has historically been redefined (up) over runs

Layout

Background counters

Luminosity scalers

All background counters

MUID.S Currents

MUID.N Currents

12/13/01

15:45:52

12/13/01

15:45:52

12:13/01

15:45:52

12:13/01

15:45:52

12/13/01

15:45:52

12/13/01

15:45:52

RPC.S

Trips

- DC 12 (see below)
- PC 20
- MUID 151 (only 5 before midnight)
- TEC 1

```
HV DC W S KS00-07 UV2 GBS |
                              278402 | 2009-04-02 05:38:19.716484-04 |
                                                                          0 | {1873466,-1262485488,-1263524392,9544888,83,6950439,-1208941832,4764032}
HV DC W S KS00-07 UV2 PBS |
                              278402 | 2009-04-02 05:38:19.772817-04 |
                                                                          0 | {0,0,-1208941848,4668387,2682868,-1262485488,-1263524392,-1208941848}
                                                                                                                                                        channel trip
                                                                          0 | {1873466,-1262485488,-1263524392,9544888,83,6950439,-1208941832,4764032}
                                                                                                                                                        channel trip
HV DC W S KS00-07 X2 GBS
                             278402 | 2009-04-02 05:38:19.802556-04 |
HV DC W S KS00-07 X2 PBS |
                             278402 | 2009-04-02 05:38:19.832521-04 |
                                                                         48 | {48,48,48,48,1280,1280,1280,1280}
                                                                                                                                                         channel trip
HV DC E S KS04-11 UV1 PBS |
                              278404 | 2009-04-02 06:51:32.79404-04 |
                                                                          1 | {512,16384,1,1,1,0,1,1}
                                                                                                                                                         channel trip
HV DC E S KS04-11 X1 BBS
                              278404 | 2009-04-02 06:51:33.494747-04 |
                                                                          1 | {156,0,-1229921512,4723652,165995600,1,1,4723630}
                                                                                                                                                        channel trip
                             278404 | 2009-04-02 06:51:33.62277-04 | 16384 | {1,1,1,1,6950439,1,4764032}
HV DC E S KS04-11 X1 GBS |
                                                                                                                                                         channel trip
                             278404 | 2009-04-02 06:51:33.853524-04 | 0 | {0,16384,1,1,1,0,1,1}
HV DC E S KS04-11 X1 PBS |
                                                                                                                                                         channel trip
HV DC E S KS12-19 UV1 GBS |
                              278404 | 2009-04-02 06:51:33.883717-04 | 16384 | {1,1,1,1,1,6950439,1,4764032}
                                                                                                                                                        channel trip
                              278404 | 2009-04-02 06:51:33.903497-04 | 0 | {0,16384,-1262483556,1,1,1,1,1}
HV DC E S KS12-19 UV1 PBS |
                                                                                                                                                         channel trip
HV DC E S KS12-19 X1 GBS
                              278404 | 2009-04-02 06:51:33.904028-04 | 16384 | {1,1,1,1,1,6950439,1,4764032}
                                                                                                                                                        | channel trip
HV DC E S KS12-19 X1 PBS
                              278404 | 2009-04-02 06:51:33.93351-04 | 0 | {-1,16384,-1262483556,1,1,1,1,1,1}
                                                                                                                                                       | channel trip
```

MUID hit rates

- MUID hit rates can be used to estimate background rates
- Most reliable way is to take a completely unbiased trigger and count hits—clock triggers
- An example from Itaru
 Nakagawa shows
 increase in hits in gap 4
 (farthest from IP)

Why we care

- Historically, the worry has been that varied current draw in the MUID would lead to varying muon trigger efficiency depending on beam conditions
- We are now trying to determine whether that's true or whether we might be able to live with it
- Of course, an increased hit rate in the MUTR and MUID leads to more confusion, probably reducing the resolution, but that's a fact of life at high luminosity

RPC

 New detector, prototype in south tunnel (and IR)

Shielding holes

- There are some holes in the shielding
- We should see whether we can plug them, particularly around the beam pipe

Radiological survey

- I had HP do a radiological survey of the area around the collimators and quad triplet, and D0 magnet
- Collimators are pretty hot!
- Quadrupole activity is pretty uniform along the magnet, higher than it was

What to make of it?

- Looks to me like 1,2,3 counters measure secondaries from the collimator which disappears fairly quickly as the beam is scraped
- Do the secondaries cause mischief in PHENIX IR?
 Not really any evidence for it

Scale to collision rate

- Started looking at background counters scaled to a collision rate (chose ZDCNS)
- Look only at counters 5 and 6 after the shielding

New background limits

- Over the weekend, I started having the shift crews ramp up as soon as the 5,6 ratios to ZDCNS were about 0.5 as seen in background_ratios.mon
- OK so far...

What next?

- If we can accumulate enough data with high background rates, we should be able to measure the efficiency as a function of rate
- We don't have good measurements of background in the region that will have the Si vertex detectors...
- I have come to think that much of what the 1,2,3 counters see is splash that we don't actually care about, but it may find shielding holes; should we just shield the quads and collimator?